

- inductive high temperature sensors up to $+230^{\circ} \mathrm{C}$ connection to amplifier

NOTES

dimensions	M8 $\times 1$	
	M18 $\times 1 \mathrm{~mm}$	
	M30 $\times 1.5 \mathrm{~mm}$	
	M50	
	$40 \times 1.5 \mathrm{~mm}$	
flush	switching distance	2 to 20 mm
non-flush	switching distance	$\mathbf{1 5}$ to 25 mm

\checkmark an innovation of ipf electronic
\checkmark robust stain. steel housing
\checkmark connection to external amplifier
\checkmark connection with teflon cable, M12- or Lemo-connector

description

Inductive high temperature sensors are available in the M8, M18, M30, M50 and cubic designs. The connection is made via an external amplifier.
The maximum ambient temperature for the M8 version is $+140^{\circ} \mathrm{C}$; for the $\mathrm{M} 18, \mathrm{M} 30, \mathrm{M} 50$ and cuboid versions it is $+230^{\circ} \mathrm{C}$. The devices are available with silicone or teflon cables and also with M12 or Lemo connectors.
To obtain the maximum switching distance, pay attention to the size of the object (standard target) and its surface finish (even surface).
The external evaluation electronics are available in three different versions. The M12 housing version (IV120450) for laying in cable ducts and the version with zinc diecast hous-
ing (IV400720) for mounting in the field are connected via M12 plug connectors and have degree of protection IP65. For switching cabinet installation on a top hat rail, model IV850700, which has terminal connections, is available.

application examples

- integration in machine parts subject to rough industrial environments
robotics applications in welding plants
- detection of hot workpieces in the steel industry, in foundries and glass manufacture
- positioning hot parts in handling and conveying systems
- foodstuffs industry, chemical industry

Notes on inductive proximity switches

I	inductive sensor
IB	flush
IN	non-flush
IV	amplifier

functional principle

The oscillation coil behind the active surface of the proximity switch produces an alternating electromagnetic field. Any electrically conductive material entering the field will induce rotational currents extracting energy from the oscillating circuit. The damping of the oscillator is then converted into a switching signal in the output amplifier.
It follows the functional principle that all metals are detected, moving or not. Important: The high frequency field produces no measurable increase in temperature and no magnetic influence inside the object to be detected. That means the sensors operate without interacting with the system.

functional principle of an inductive proximity switch

switching distance / norm measuring plate

The distance to the sensor surface, where a metal causes a change in the switching state, is called switching distance. This distance is not the same for all metals. That is why a so-called correction factor has been specified for the respective metal, e.g. copper or aluminum. The nominal switching distance S_{n} is determined by a norm measuring plate. This is a quadratic metal plate made from steel (St37) with a thickness of 1 mm and a smoothed surface for determining the switching distance S_{n}, otherwise the edge length is the same as the diameter of the active surface.
One differentiates between the normal switching distance S_{n}, which is determined without consideration for manufacturing tolerances or external influences, and the operational switching distance Sa.
The safe operational switching distance is between 0 and 81% of $\mathrm{Sn}_{\mathrm{n}}\left(0<\mathrm{Sa}_{\mathrm{a}}<0.81 \times \mathrm{Sn}\right)$.

switching hysteresis

During the approach and subsequent removal of the measuring plate from the initiator there will be a difference between switch-on point and switch-off point. This integrated hysteresis prevents the switching output from oscillating during mechanical vibrations. Usually the hysteresis is between 5 to 15% of Sn .
movement direction

output circuit

For the switching outputs of direct current devices a differentiation is made between PNP and NPN. For PNP outputs the load is connected in such a way that it is energized (positive switching) when the sensor is driven to full output (damping). NPN devices maintain their load permanently energized, switching the earth connection only (negative switching). A corresponding wiring diagram is supplied with every sensor.

series connection

When a number of sensors are connected in series, the voltage drop of each device should be taken into account in order to ensure that the final device also receives the required operating voltage. The internal electronics permits a maximum of 3 devices to be connected in series.
To be operationally safe the connection in series of 3-wire PNP sensors requires a logical AND-gate, e.g. VL250100.

parallel connection

When connecting 3-wire PNP-sensors in parallel, the internal resistance of the sensor that is driven to full output influences the other proximity switches. This requires decoupling diodes to be inserted into the outputs. A logical OR-gate, e.g. the VL250120, can be used to facilitate the connection in parallel.

mounting

Please follow the mounting instructions for flush or non-flush sensors when installing inductive proximity switches into a metal backing material to avoid undefined switching of the device. For a flush device the active face may be on one level with the backing material.
Non-flush sensors must protrude. As a rule of thumb use $2 x$ the nominal switching distance of the sensor.
mounting instructions for flush sensors

mounting instructions for non-flush sensors

switching frequency

The switching frequency states the maximum number of available switching operations per second. Every switching operation of the inductive proximity switch triggers the oscillating circuit.
The time needed for the oscillation puts a limit on the switching frequency.
For half the nominal switching distance the pulse to pause ratio should be at least $1: 2$,
i.e. when choosing the right proximity switch, a compromise needs to be made between the size of the sensor and the switching frequency. General rule: The larger the sensor, the smaller the switching frequency.

tightening torques

To avoid damage when mounting proximity switches, never exceed the tightening torque given.
stainless steel thread
M8 = 8Nm
$\mathrm{M} 18=50 \mathrm{Nm}$
$\mathrm{M} 30=150 \mathrm{Nm}$
$\mathrm{M} 50=200 \mathrm{Nm}$

active switching zone / active surface:

The active switching zone is the area in front of the active surface, within which the proximity switch reacts to the approach of metal parts, i.e. changes the state of the output.

nominal switching distance (Sn):

The distance at which a metal part that is approaching the active surface of the proximity switch causes a change in the state of the switching output.

real switching distance (Sr) :

The actual switching distance may vary due to component tolerances or external influences. For devices of this series, it may vary from the nominal switching distance by up to max. $\pm 20 \%$.
repeatability:
Repeat accuracy of two measurements under standardized conditions. The difference in the measured values should be less than 10%.

output function:

normally open: Object within the area of the active switching zone - output switched
normally closed: Object within the area of the active switching zone - output inhibited

readiness delay:

Time required by the proximity switch to be functional after the supply voltage is applied (lies in the millisecond range).

correction factor:

Specify the reduction in the switching distance, if materials other than steel St37 are used. The change in the switching distance depends on the type, characteristics (internal structure), size and the geometry of the material that is to be detected.
typical correction factors: St37: $1 \quad$ V2A: approx. 0.7 Ms: approx. $0.4 \quad \mathrm{Al}$: approx. $0.3 \quad \mathrm{Cu}$: approx. 0.2

In order to assess the approximate switching distance on the materials which differ from St37, the switching distance for St37 has to be multiplied by the appropriate correction factor.

repeat accuracy

The repeat accuracy (according to IEC 60947-5-2 / EN 60947-5-2) is the repeat accuracy of the real switching distance Sr over a period of 8 hours at an ambient temperature of $(23 \pm 5)^{\circ} \mathrm{C}$ and a defined operating voltage. The specified repeat accuracy corresponds to this definition. Generally the repeat accuracy is considerably better in case of sequent measurements.
reverse polarity protection:
An internal protection prevents destruction of the proximity switch if the connection lines are accidentally swapped.

short-circuit protection:

An internal protection prevents destruction of the proximity switch in case of an overcurrent.

switching point drift:

The switching point shifts due to the change in ambient temperature.

Warning: Never use these devices in applications where the safety of a person depends on their functionality.

switching distance	2mm	5mm	5 mm
operating temperature	$0 \ldots+140^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$
mounting	flush	flush	flush
3 m teflon cable/ M12-connector	IB086050	IB186050	IB186053
5 m teflon cable/ M12-connector	-	IB186051	-
10 m teflon cable/ M12-connector	-	IB186052	-
TECHNICAL DATA			
switching distance (Sn)	2 mm	5 mm	5 mm
mounting	flush	flush	flush
output signal	see following pages	see following pages	see following pages
operating voltage	see following pages	see following pages	see following pages
hysteresis	2 ... 15\%	2 ... 15\%	2 ... 15\%
switching frequency	300 Hz	300 Hz	300 Hz
reverse polarity protection	+	+	+
dimensions	M8x1	$\mathrm{M} 18 \times 1 \mathrm{~mm}$	$\mathrm{M} 18 \times 1 \mathrm{~mm}$
length (thread/complete)	$23 \mathrm{~mm} / 30 \mathrm{~mm}$	$25 \mathrm{~mm} / 30 \mathrm{~mm}$	$60 \mathrm{~mm} / 70 \mathrm{~mm}$
housing material	stainl. steel	stainl. steel	stainl. steel
material (front cap)	Vectra ${ }^{\text {® }}$	Vectra ${ }^{\text {® }}$	Vectra ${ }^{\text {® }}$
operating temperature	$0 \ldots+140^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$
degree of protection (EN 60529)	IP50	IP50	IP50
connection	3m teflon cable/M12-connector	see above	3m teflon cable/M12-connector
connection accessories	-	-	-
mounting accessories	AY000098	AY000100	AY000100

switching distance	10 mm	10mm	15 mm	15 mm
operating temperature	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$
mounting	flush	flush	non-flush	non-flush
3m teflon cable/ M12-connector	IB306050	-	IN306050	-
5 m teflon cable/ M12-connector	IB306051	-	IN306051	-
10 m teflon cable/ M12-connector	IB306052	-	IN306052	-
15 m teflon cable/ M12-connector	-	-	IN306053	-
Lemo connector TECHNICAL DATA		IB306040		IN306040
switching distance (Sn)	10 mm	10 mm	15 mm	15 mm
mounting	flush	flush	non-flush	non-flush
output signal	see following pages	see following pages	see following pages	see following pages
operating voltage	see following pages	see following pages	see following pages	see following pages
hysteresis	2 ... 15\%	2 ... 15\%	2 ... 15\%	2 ... 15\%
switching frequency	200 Hz	200 Hz	150 Hz	150 Hz
reverse polarity protection	+	+	+	+
dimensions	$\mathrm{M} 30 \times 1.5 \mathrm{~mm}$			
length (thread/complete)	$60 \mathrm{~mm} / 70 \mathrm{~mm}$	$60 \mathrm{~mm} / 84 \mathrm{~mm}$	$60 \mathrm{~mm} / 79 \mathrm{~mm}$	$60 \mathrm{~mm} / 91 \mathrm{~mm}$
housing material	stainl. steel	stainl. steel	stainl. steel	stainl. steel
material (front cap)	Vectra ${ }^{\text {® }}$			
operating temperature	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$
degree of protection (EN 60529)	IP50	IP50	IP50	IP50
connection	see above	Lemo-connector	see above	Lemo-connector
connection accessories	-	e.g. VK206941	-	e.g. VK206941
mounting accessories	AY000101	AY000101	AY000101	AY000101

switching distance	25mm	25mm	20mm
operating temperature	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$
mounting	non-flush	non-flush	non-flush
3m teflon cable/ M12-connector	IN506050	-	-
5m teflon cable/ M12-connector	IN506051	-	-
10m teflon cable/ M12-connector	IN506052	-	-
Lemo connector		IN506040	IN406040
TECHNICAL DATA			
switching distance (Sn)	25 mm	25 mm	20mm
mounting	non-flush	non-flush	non-flush
output signal	see following pages	see following pages	see following pages
operating voltage	see following pages	see following pages	see following pages
hysteresis	2 ... 15\%	2 ... 15\%	2 ... 15\%
switching frequency	150 Hz	150 Hz	100 Hz
reverse polarity protection	+	+	+
dimensions	M $50 \times 1.5 \mathrm{~mm}$	M50x1.5mm	$40 \times 40 \times 66 \mathrm{~mm}$
length (thread/complete)	$41 \mathrm{~mm} / 63.5 \mathrm{~mm}$	$41 \mathrm{~mm} / 77 \mathrm{~mm}$	-
housing material	stainl. steel	stainl. steel	stainl. steel
material (front cap)	Vectra ${ }^{\text {® }}$	Vectra ${ }^{\text {® }}$	Vectra ${ }^{\text {® }}$
operating temperature	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$	$0 \ldots+230^{\circ} \mathrm{C}$
degree of protection (EN 60529)	IP50	IP50	IP50
connection	see above	see above	Lemo-connector
connection accessories	-	e.g. VK206941	e.g. VK206F41
mounting accessories	AY000102	AY000102	AY000135

TECHNICAL DATA

output signal	pnp, no/nc, alarm	pnp, no/nc, alarm
operating voltage	$10 . . .30 \mathrm{~V}$ DC	10 ... 30V DC
current consumption (w/o load)	$\leq 25 \mathrm{~mA}$	$\leq 25 \mathrm{~mA}$
output current (max. load)	200 mA	200 mA
voltage drop (max. load)	2.0 V DC	2.0 V DC
switching frequency	1 kHz	1 kHz
display (signal)	+	+
short-circuit protection	+	+
reverse polarity protection	+	+
dimensions	$40 \times 42 \times 88 \mathrm{~mm}$	$17.8 \times 85 \times 65 \mathrm{~mm}$
housing material	aluminum	plastic
length (thread/complete)	- / -	- / -
operating temperature	$-25 \ldots+75^{\circ} \mathrm{C}$	$-25 \ldots+75^{\circ} \mathrm{C}$
degree of protection (EN 60529)	IP65	IP20
connection	see above	see above

* in event of short circuit or interruption in the line between sensor and amplifier, both outputs switch
to "high".
adjustment options IV400720 / IV850700

DIP switch	On	Off
1	output 2 = exclusive-OR	output 2 = alarm
2	setting control on	setting control off
3	time delay on	time delay off
4	turn-on delay 0-1s (potentiometer)	turn-off delay 0-1s (potentiometer)
5	high hysteresis / high setting control	small hysteresis / small setting control
6	3-wire sensors	2-wire sensors

green LED 1: operating voltage
yellow LED 2: object identified
red LED 3: lights up: sensor is not connected
flashes: functional reserve range
lights up + yellow LED flashes: short circuit at the output

Green/yellow LED 1: operating voltage / object identified
Red LED 2: lights up: sensor is not connected flashes: functional reserve range lights up + yellow LED flashes: short circuit at the output

alarm output:

The alarm output is activated by switching DIP switch 1 to the 'on' setting. If no sensor is connected, or if the line to the sensor is disconnected, the alarm output will switch on. In addition, the red LED will light up. The alarm output also switches on if there is a short circuit on the switching output of the amplifier. In this case, the red LED lights up and the yellow LED flashes.

hysteresis setting:

The hysteresis can be set in two stages in order to adjust the size of the connected sensors. For large sensors (designs 30 and 50), it is recommended that the "small" setting be selected; for small sensors (design 18), the "large" setting should be used.
The sensors depicted in this catalog that are designed for operation with an external amplifier are two-wire sensors. The electrical connection between the sensor and amplifier takes place via two wires: brown (PIN 1 of M12-connector) and blue (PIN 3 of M12-connector).
pin configuration IV400720

IV850700

Only one sensor can be connected!

connection

connector device 2-wire (sensors)

wire colors: bn = brown (1), bu = blue (3), bk = black (4)
amplifier IV400720

amplifier IV120450

wire colors: bn = brown (1), wh = white (2), bu = blue (3), bk = black (4)

mounting accessories

AY000098 for design M8x1, stainl. steel

AY000101 for design M30x1.5, stainl. steel

AY000099 for design M12x1, stainl. steel

AY000102 for design M50x1.5, aluminum

AY000100 for design M18×1, stainl. steel

AY000104 for design M30x1.5, aluminum

AY000135 for design 40×40, stainl. steel

This data sheet contains only the available standard versions. Please contact us for other output and connection versions.
We will be pleased to supply the matching cable socket for your connector devices. Please refer to the list in catalog chapter "accessories" under "cable sockets ipf-SENSORFLEX ${ }^{\text {®" }}$ or search our website for "VK".
Warning: Never use these devices in applications where the safety of a person depends on their functionality.

NOTES

